

Deep Learning

20 Generative Adversarial Network (GAN)

[Dr. Konda Reddy Mopuri](https://krmopuri.github.io/) Dept. of AI, IIT Hyderabad Jan-May 2024

భారతీయ సాంకేతిక విజాన సంస హెదరాబాద్ **Generative Adversarial Networks (GAN)** भारतीय प्रौद्यं Indian Institute of Technole

¹ Work by Ian Goodfellow et al. ([NeurIPS 2014](https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf))

¹ Sampler that draws high quality samples from *p^m*

- ¹ Sampler that draws high quality samples from *p^m*
- ² Without computing *p^x* and *p^m* ensures closeness

- ¹ Sampler that draws high quality samples from *p^m*
- ² Without computing *p^x* and *p^m* ensures closeness
- ³ Draws samples that are similar to the train data (but not exactly them)

Method

Credit: Microsoft research blog

1 Introduce a latent variable (z) with a simple prior (p_z)

Method

Credit: Microsoft research blog

1 Introduce a latent variable (z) with a simple prior (p_z) 2 Draw $z \sim p_z$, i/p to the generator (G) $\rightarrow \hat{x} \sim p_G$

Dr. Konda Reddy Mopuri dl - 20/ GAN 4

Method

Credit: Microsoft research blog

- **1** Introduce a latent variable (z) with a simple prior (p_z)
- 2 Draw $z \sim p_z$, i/p to the generator (G) $\rightarrow \hat{x} \sim p_G$
- 3 Machinery to ensure $p_G \approx p_{data}$

Dr. Konda Reddy Mopuri dl - 20/ GAN 4

p ^{*G*} $\approx p$ **d**ata

¹ Employ a classifier to differentiate between **real** samples *x ∼ p*data (label 1) and **generated**(fake) ones $\hat{x} \sim p_G$ (label 0)

p ^{*G*} $\approx p$ **d**ata

Credit: Microsoft research blog

- ¹ Employ a classifier to differentiate between **real** samples *x ∼ p*data (label 1) and **generated**(fake) ones $\hat{x} \sim p_G$ (label 0)
- ² Referred to as the **Discriminator (D)**

p ^{*G*} $\approx p$ **data**

Credit: Microsoft research blog

- ¹ Employ a classifier to differentiate between **real** samples *x ∼ p*data (label 1) and **generated**(fake) ones $\hat{x} \sim p_G$ (label 0)
- ² Referred to as the **Discriminator (D)**
- **3** Train the G such that D misclassifies generated samples \hat{x} into class 1 (can't differentiate b/w $x \sim p_{\text{data}}$ and $\hat{x} \sim p_G$)

Dr. Konda Reddy Mopuri dl - 20/ GAN 5

Training Objective

$$
\text{min}_G\;\text{max}_D\bigg(\mathbb{E}_{x\sim p_{\text{data}}}[logD(x)]+\mathbb{E}_{z\sim p_z}[log(1-D(G(z)))]\bigg)
$$

¹ minmax optimization (or, zero-sum game)

Training Objective

$$
\text{min}_G\; \text{max}_D \bigg(\mathbb{E}_{x \sim p_{\text{data}}}[log D(x)] + \mathbb{E}_{z \sim p_z}[log (1 - D(G(z)))] \bigg)
$$

- ¹ minmax optimization (or, zero-sum game)
- 2 With a sigmoid o/p neuron, $D(\cdot) \rightarrow$ probability that the i/p is real

Training Objective

$$
\text{min}_G \; \text{max}_D \bigg(\mathbb{E}_{x \sim p_{\text{data}}}[log D(x)] + \mathbb{E}_{z \sim p_z}[log (1 - D(G(z)))] \bigg)
$$

- ¹ minmax optimization (or, zero-sum game)
- 2 With a sigmoid o/p neuron, $D(\cdot) \rightarrow$ probability that the i/p is real
- ³ Expectation in practice is average over a batch of samples

¹ Natural idea is to go for training *D* first and then to train *G*

- ¹ Natural idea is to go for training *D* first and then to train *G*
- ² Issue here would be poor gradients for training *G*.

- ¹ Natural idea is to go for training *D* first and then to train *G*
- ² Issue here would be poor gradients for training *G*.
- ³ min*^G* (E*z∼p^z* [*log*(1 *[−] ^D*(*G*(*z*)))])

- ¹ Natural idea is to go for training *D* first and then to train *G*
- ² Issue here would be poor gradients for training *G*.
- ³ min*^G* (E*z∼p^z* [*log*(1 *[−] ^D*(*G*(*z*)))])
- $\frac{\partial \log(1 \sigma(x))}{\partial x} = \frac{\sigma(x) \cdot (\sigma(x) 1)}{(1 \sigma(x))} = -\sigma(x)$

- ¹ Natural idea is to go for training *D* first and then to train *G*
- ² Issue here would be poor gradients for training *G*.
- ³ min*^G* (E*z∼p^z* [*log*(1 *[−] ^D*(*G*(*z*)))])
- $\frac{\partial \log(1 \sigma(x))}{\partial x} = \frac{\sigma(x) \cdot (\sigma(x) 1)}{(1 \sigma(x))} = -\sigma(x)$
- ⁵ Which would be *≈* 0 for a confident *D →* (no gradients to train *G*!)

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used $k = 1$, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)},..., z^{(m)}\}$ from noise prior $p_a(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{data}(\boldsymbol{x})$.
- Update the discriminator by ascending its stochastic gradient:

$$
\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].
$$

end for

- Sample minibatch of m noise samples $\{z^{(1)},...,z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$
\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1-D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right).
$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Idea of convergence

¹ Adversarial components *→* nontrivial convergence for the training

Idea of convergence

- ¹ Adversarial components *→* nontrivial convergence for the training
- 2 In other words, objective is not to push the loss/objective towards 0

$$
\begin{aligned} &\text{min}_G \; \text{max}_D \bigg(\mathbb{E}_{x \sim p_\text{data}}[logD(x)] + \mathbb{E}_{z \sim p_z} [log(1-D(G(z)))] \bigg) \\ &\to \text{min}_G \; \text{max}_D \int_x \bigg(p_\text{data}(x) \cdot logD(x) + p_G(x) \cdot log(1-D(x)) \bigg) dx \\ &\to \text{min}_G \int_x \; \text{max}_D \bigg(p_\text{data}(x) \cdot logD(x) + p_G(x) \cdot log(1-D(x)) \bigg) dx \\ &\text{let } y = D(x), \; a = p_\text{data}, \; \text{and } b = p_G \\ &\to f(y) = a \cdot \log y + b \cdot \log(1-y) \\ &f \; \text{exhibits local maximum at } y = \frac{a}{a+b} \end{aligned}
$$

 $\text{Optimal discriminator } D^*_G(x) = \frac{p_{\sf data}(x)}{p_{\sf data}(x) + P_G(x)}$

Dr. Konda Reddy Mopuri **dl** - 20/ GAN 10

$$
\begin{aligned} &\text{min}_{G} \int_{X} \bigg(p_{\text{data}}(x) \cdot log D^*_{G}(x) + p_G(x) \cdot log(1-D^*_{G}(x)) \bigg) dx \\ &\text{min}_{G} \int_{X} \bigg(p_{\text{data}}(x) \cdot \bigg[\log \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + P_G(x)} \bigg] + p_G(x) \cdot log(1-\frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + P_G(x)}) \bigg) dx \\ &\text{min}_{G} \int_{X} \bigg(p_{\text{data}}(x) \cdot \bigg[\log \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + P_G(x)} \bigg] + p_G(x) \cdot log \big(\frac{p_G(x)}{p_{\text{data}}(x) + P_G(x)} \big) \bigg) dx \\ &\text{min}_{G} \bigg(\mathbb{E}_{x \sim p_{\text{data}}}\bigg[\log \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + P_G(x)} \bigg] + \mathbb{E}_{x \sim p_G} \cdot log \big(\frac{p_G(x)}{p_{\text{data}}(x) + P_G(x)} \big) \bigg) \end{aligned}
$$

Dr. Konda Reddy Mopuri 11 and 10 and 10 and 120 and 12

$$
\begin{aligned} &\text{min}_{G}\bigg(\mathbb{E}_{x\sim p_{\text{data}}}\bigg[\log\frac{2*p_{\text{data}}(x)}{2*(p_{\text{data}}(x)+P_G(x))}\bigg]+ \mathbb{E}_{x\sim p_G}\cdot log(\frac{2*p_{\text{data}}(x)}{2*(p_{\text{data}}(x)+P_G(x))})\bigg)\\ &\text{min}_{G}\bigg(\mathbb{E}_{x\sim p_{\text{data}}}\bigg[\log\frac{2*p_{\text{data}}(x)}{(p_{\text{data}}(x)+P_G(x))}\bigg]+ \mathbb{E}_{x\sim p_G}\cdot log(\frac{2*p_{\text{G}}(x)}{(p_{\text{data}}(x)+P_G(x)})-\\ &\text{log 4})\bigg)\\ &\text{min}_{G}\bigg(\textbf{KL}(p_{\text{data}}(\textbf{x}),\frac{p_{\text{data}}(\textbf{x})+P_G(\textbf{x})}{2})+\textbf{KL}(p_G(\textbf{x}),\frac{(p_{\text{data}}(\textbf{x})+P_G(\textbf{x})}{2})-\\ &\text{log 4})\bigg)\\ &\text{min}_{G}\bigg(2*\textbf{JSD}(p_{\text{data}},p_G)-\log 4\bigg)\\ &\to \text{minimized when }p_{\text{data}}=p_G\end{aligned}
$$

Dr. Konda Reddy Mopuri dl - 20/ GAN 12

$$
\text{① } D^*_G(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_G(x)} \text{ (Optimal Discriminator for any G)}
$$

\n- $$
D_G^*(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_G(x)}
$$
 (Optimal Discriminator for any G)
\n- $p_{\text{data}} = p_G$ (OptimalGenerator for any D)
\n

\n- **①**
$$
D_G^*(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_G(x)}
$$
 (Optimal Discriminator for any G)
\n- **②** $p_{\text{data}} = p_G$ (OptimalGenerator for any D)
\n- **③** $D_G^*(x) = \frac{1}{2}$
\n

[Radford et al. ICLR 2016](https://arxiv.org/abs/1511.06434)

¹ Combined the developments of CNNs with the generative modeling

[Radford et al. ICLR 2016](https://arxiv.org/abs/1511.06434)

- ¹ Combined the developments of CNNs with the generative modeling
- ² Demonstrated some of the best practices for stable training of deep GAN architectures

[Radford et al. ICLR 2016](https://arxiv.org/abs/1511.06434)

¹ Strided convolution in place of spatial pooling (learn spatial downsampling)

[Radford et al. ICLR 2016](https://arxiv.org/abs/1511.06434)

- ¹ Strided convolution in place of spatial pooling (learn spatial downsampling)
- ² No dense layers

[Radford et al. ICLR 2016](https://arxiv.org/abs/1511.06434)

- ¹ Strided convolution in place of spatial pooling (learn spatial downsampling)
- ² No dense layers
- ³ Batchnorm in G and D

[Radford et al. ICLR 2016](https://arxiv.org/abs/1511.06434)

- ¹ Strided convolution in place of spatial pooling (learn spatial downsampling)
- ² No dense layers
- ³ Batchnorm in G and D
- ⁴ ReLU (tanh for the o/p layer) for G and Leaky-ReLU (sigmoid for the o/p layer) for D

[Radford et al. ICLR 2016](https://arxiv.org/abs/1511.06434)

¹ Smooth interpolation in the latent space and Vector arithmetic

[Radford et al. ICLR 2016](https://arxiv.org/abs/1511.06434)

- ¹ Smooth interpolation in the latent space and Vector arithmetic
- ² Unsupervised feature learning (via the Discriminator)

Moving in the latent space

¹ Interpolate between two points in the latent space and visualize

[Radford et al. ICLR 2016](https://arxiv.org/pdf/1511.06434.pdf)

Moving in the latent space

- **1** Interpolate between two points in the latent space and visualize
- ² Smooth transition in the generated image is a sign of good model

[Radford et al. ICLR 2016](https://arxiv.org/pdf/1511.06434.pdf)

భారతీయ సాంకేతిక విజాన సంస హెదరాబాద్ dian Institute of Technology Hyderabad

Vector arithmetic

[Radford et al. ICLR 2016](https://arxiv.org/pdf/1511.06434.pdf)

Pose Transformation

[Radford et al. ICLR 2016](https://arxiv.org/pdf/1511.06434.pdf)

Dr. Konda Reddy Mopuri dl - 20/ GAN 19

Representation learning

Table 1: CIFAR-10 classification results using our pre-trained model. Our DCGAN is not pretrained on CIFAR-10, but on Imagenet-1k, and the features are used to classify CIFAR-10 images.

[Radford et al. ICLR 2016](https://arxiv.org/pdf/1511.06434.pdf)

Evaluating GANs

1 Open research problem

Evaluating GANs

- ¹ Open research problem
- ² Humans judgement!

Evaluating GANs

- **1** Open research problem
- ² Humans judgement!
- ³ In case of images
	- **Recognizable objects**: accurate and high-confidence predictions by a classifier
	- **Semantic diversity**: samples should be drawn evenly from all categories of train data

1 Consider the pretrained Inception classifier $\rightarrow p(y/x)$

- 1 Consider the pretrained Inception classifier $\rightarrow p(y/x)$
- 2 label distribution of the generated samples $\rightarrow p(y)$

- 1 Consider the pretrained Inception classifier $\rightarrow p(y/x)$
- 2 label distribution of the generated samples $\rightarrow p(y)$
- ³ Desired: low entropy for *p*(*y/x*) (distinctly recognizable) and high entropy for $p(y)$ (semantic diversity)

- Consider the pretrained Inception classifier $\rightarrow p(y/x)$
- 2 label distribution of the generated samples $\rightarrow p(y)$
- ³ Desired: low entropy for *p*(*y/x*) (distinctly recognizable) and high entropy for $p(y)$ (semantic diversity)
- $\textcolor{red}{\bullet}$ Inception score (IS) = exp $\Big(H (y) H (y / x) \Big)$

- Consider the pretrained Inception classifier $\rightarrow p(y/x)$
- 2 label distribution of the generated samples $\rightarrow p(y)$
- ³ Desired: low entropy for *p*(*y/x*) (distinctly recognizable) and high entropy for *p*(*y*) (semantic diversity)
- $\textcolor{red}{\bullet}$ Inception score (IS) = exp $\Big(H (y) H (y / x) \Big)$
- **5** Higher is better

¹ Based completely on the generated data (real data is not considered)

1 Attempts to find the distance b/w p_{data} and p_G

- **1** Attempts to find the distance b/w p_{data} and p_G
- ² In the feature space (inception model, pool3 layer)

- **1** Attempts to find the distance b/w p_{data} and p_G
- ² In the feature space (inception model, pool3 layer)
- ³ Frechet distance between two multi-variate Gaussians

$$
d^{2}((m, C), (m_d, C_d)) = |m - m_d|^{2} + Tr(C + C_d - 2(C \cdot C_d)^{2})
$$

 $(m_d, C_d$ are mean and covariance of the original data) (*m, C* are mean and covariance of the generated data)

- 1 Attempts to find the distance b/w p_{data} and p_G
- ² In the feature space (inception model, pool3 layer)
- ³ Frechet distance between two multi-variate Gaussians

$$
d^{2}((m, C), (m_d, C_d)) = |m - m_d|^{2} + Tr(C + C_d - 2(C \cdot C_d)^{2})
$$

 $(m_d, C_d$ are mean and covariance of the original data) (*m, C* are mean and covariance of the generated data)

lower is better